创伤,特别是交通伤已成为人类一大公害,国外从本世纪40年代开始进行实验研究,早期实验研究无论是用自由落体式或摆锤式致伤撞击装置,不仅体积大且笨重,最大缺点是不能模拟高速致伤条件。 随后有人用撞击枪制造动物创伤模型,虽提高了撞击速度,机型较小,使用方便,但其速度和压缩幅度不易掌握。 本世纪80年代初美国通用汽车公司首先设计制作出气动式撞击机,使撞击速度大大提高。 1993年国内第三军医大学野战外科研究所报道在BIM-1型(自由落体式)生物撞击机基础上研制出一台BIM-Ⅱ型(气动式)生物撞击机 . 我们于上述基础上,研制了一台集气动式撞击机、激光测速仪、呼吸/心跳同步触发控制器、万能动物固定台和信号处理、分析记录仪、5部分为一体的多功能撞击致伤装置。 整机性能稳定,各类致伤参数精确可调,自动化程度高,可应用于生物机体各部位致创伤,更适合对胸部创伤的研究。
多功能撞击致伤装置是指在同一设备中可以完成不同动物、不同部位、不同致伤条件和受伤形式的多种功能的组合,在实验中可以方便的调整各种撞击参数,通过简单更换撞击部位而改换致伤方式,是创伤研究中不可缺少的主要设备。 其中气动式撞击机又是模拟现代高速交通伤的必要条件,本装置炮弹出膛初速可达330 km/h,并有激光测速仪配套,实时测定致伤物速度,进而换算出致伤能量,适用于不同致伤速度的交通事故伤研究。
人们早已了解肺与支气管受伤程度与呼吸状态和声门关闭与否有很大关系,Lau在本世纪80年代也指出收缩末期心脏受撞击后易发生反弹,舒张末期受撞击则易发生变形和吸收能量,并导致心脏破裂。 因此设计与之配套的呼吸/心跳同步触发控制器,根据需要将撞击时间点固定于呼吸或心跳某一时相完成撞击动作,对胸部撞击伤的研究就显得十分重要,国内尚未见报道。 此项研究还改用了应变式传感器,从胸壁运动引出呼吸波形信号控制撞击动作,获得满意结果。 完善和提高了胸部撞击伤实验研究质量。
相关文章